/lyra
Whale Scanner Agent
from langchain.agents import AgentExecutor
from langchain.tools import BaseTool
from typing import Dict, List, Optional
import asyncio
class WhaleAnalysisAgent:
def __init__(self, config: Dict):
self.config = config
self.helius_client = HeliusRPCClient(config['helius_api_key'])
self.memory_store = VectorMemoryStore(config['vector_db'])
self.llm = ChatAnthropic(model="claude-3-sonnet")
async def analyze_wallet_cluster(self, wallet_addresses: List[str]) -> Dict:
"""Analyzes a cluster of whale wallets for coordinated behavior"""
analysis_tasks = []
for wallet in wallet_addresses[:10]: # Rate limiting
task = self.process_wallet_transactions(wallet)
analysis_tasks.append(task)
# Parallel processing with rate limiting
results = await asyncio.gather(*analysis_tasks, return_exceptions=True)
# Constitutional AI validation
validated_results = await self.constitutional_validation(results)
return {
"cluster_analysis": validated_results,
"coordination_score": self.calculate_coordination_score(results),
"risk_assessment": self.assess_cluster_risk(results),
"recommendations": self.generate_recommendations(results)
}
async def process_wallet_transactions(self, wallet_address: str) -> Dict:
"""Deep analysis of individual wallet transaction patterns"""
# Fetch transaction history
transactions = await self.helius_client.get_transactions(
wallet_address,
limit=50
)
# Extract token rotation patterns
rotation_analysis = self.analyze_token_rotations(transactions)
# Calculate timing urgency metrics
urgency_metrics = self.calculate_urgency_metrics(transactions)
# Store in vector memory for pattern recognition
await self.memory_store.store_wallet_patterns(
wallet_address,
rotation_analysis
)
return {
"wallet": wallet_address,
"transaction_count": len(transactions),
"rotation_patterns": rotation_analysis,
"urgency_score": urgency_metrics['urgency_score'],
"volume_patterns": urgency_metrics['volume_patterns']
}
def analyze_token_rotations(self, transactions: List[Dict]) -> Dict:
"""Identifies token rotation patterns and trading behaviors"""
token_flows = {}
rotation_events = []
for tx in transactions:
if tx.get('tokenTransfers'):
for transfer in tx['tokenTransfers']:
mint = transfer['mint']
if mint not in token_flows:
token_flows[mint] = {
'inflows': 0,
'outflows': 0,
'net_flow': 0,
'first_seen': tx['timestamp'],
'last_seen': tx['timestamp']
}
if transfer['changeType'] == 'increase':
token_flows[mint]['inflows'] += transfer['amount']
else:
token_flows[mint]['outflows'] += transfer['amount']
token_flows[mint]['net_flow'] = (
token_flows[mint]['inflows'] -
token_flows[mint]['outflows']
)
token_flows[mint]['last_seen'] = tx['timestamp']
# Identify rotation patterns
for mint, flow_data in token_flows.items():
if (flow_data['inflows'] > 0 and
flow_data['outflows'] > 0 and
abs(flow_data['net_flow']) < flow_data['inflows'] * 0.1):
rotation_events.append({
'token_mint': mint,
'rotation_volume': min(flow_data['inflows'],
flow_data['outflows']),
'duration': flow_data['last_seen'] - flow_data['first_seen'],
'pattern_type': 'rotation'
})
return {
'token_flows': token_flows,
'rotation_events': rotation_events,
'rotation_score': len(rotation_events) / len(token_flows) if token_flows else 0
}Last updated
