/lyra
Whale Scanner Agent
The Whale Scanner Agent implements advanced on-chain analysis capabilities, monitoring large wallet movements and identifying trading patterns across multiple blockchains.
Technical Implementation
from langchain.agents import AgentExecutor
from langchain.tools import BaseTool
from typing import Dict, List, Optional
import asyncio
class WhaleAnalysisAgent:
def __init__(self, config: Dict):
self.config = config
self.helius_client = HeliusRPCClient(config['helius_api_key'])
self.memory_store = VectorMemoryStore(config['vector_db'])
self.llm = ChatAnthropic(model="claude-3-sonnet")
async def analyze_wallet_cluster(self, wallet_addresses: List[str]) -> Dict:
"""Analyzes a cluster of whale wallets for coordinated behavior"""
analysis_tasks = []
for wallet in wallet_addresses[:10]: # Rate limiting
task = self.process_wallet_transactions(wallet)
analysis_tasks.append(task)
# Parallel processing with rate limiting
results = await asyncio.gather(*analysis_tasks, return_exceptions=True)
# Constitutional AI validation
validated_results = await self.constitutional_validation(results)
return {
"cluster_analysis": validated_results,
"coordination_score": self.calculate_coordination_score(results),
"risk_assessment": self.assess_cluster_risk(results),
"recommendations": self.generate_recommendations(results)
}
async def process_wallet_transactions(self, wallet_address: str) -> Dict:
"""Deep analysis of individual wallet transaction patterns"""
# Fetch transaction history
transactions = await self.helius_client.get_transactions(
wallet_address,
limit=50
)
# Extract token rotation patterns
rotation_analysis = self.analyze_token_rotations(transactions)
# Calculate timing urgency metrics
urgency_metrics = self.calculate_urgency_metrics(transactions)
# Store in vector memory for pattern recognition
await self.memory_store.store_wallet_patterns(
wallet_address,
rotation_analysis
)
return {
"wallet": wallet_address,
"transaction_count": len(transactions),
"rotation_patterns": rotation_analysis,
"urgency_score": urgency_metrics['urgency_score'],
"volume_patterns": urgency_metrics['volume_patterns']
}
def analyze_token_rotations(self, transactions: List[Dict]) -> Dict:
"""Identifies token rotation patterns and trading behaviors"""
token_flows = {}
rotation_events = []
for tx in transactions:
if tx.get('tokenTransfers'):
for transfer in tx['tokenTransfers']:
mint = transfer['mint']
if mint not in token_flows:
token_flows[mint] = {
'inflows': 0,
'outflows': 0,
'net_flow': 0,
'first_seen': tx['timestamp'],
'last_seen': tx['timestamp']
}
if transfer['changeType'] == 'increase':
token_flows[mint]['inflows'] += transfer['amount']
else:
token_flows[mint]['outflows'] += transfer['amount']
token_flows[mint]['net_flow'] = (
token_flows[mint]['inflows'] -
token_flows[mint]['outflows']
)
token_flows[mint]['last_seen'] = tx['timestamp']
# Identify rotation patterns
for mint, flow_data in token_flows.items():
if (flow_data['inflows'] > 0 and
flow_data['outflows'] > 0 and
abs(flow_data['net_flow']) < flow_data['inflows'] * 0.1):
rotation_events.append({
'token_mint': mint,
'rotation_volume': min(flow_data['inflows'],
flow_data['outflows']),
'duration': flow_data['last_seen'] - flow_data['first_seen'],
'pattern_type': 'rotation'
})
return {
'token_flows': token_flows,
'rotation_events': rotation_events,
'rotation_score': len(rotation_events) / len(token_flows) if token_flows else 0
}
Key Features
Real-Time Transaction Monitoring: Sub-second blockchain event processing
Pattern Recognition: ML-based identification of whale trading patterns
Coordination Detection: Multi-wallet behavior correlation analysis
Risk Scoring: Constitutional AI-based risk assessment
Last updated