Data Pipeline Architecture

COMPI's data pipeline implements real-time processing capabilities with fault tolerance and scalability.

Real-Time Data Ingestion

import asyncio
from typing import Dict

class DataPipelineOrchestrator:
    def __init__(self, config: Dict):
        self.config = config
        self.stream_processors = {
            'blockchain': BlockchainStreamProcessor(),
            'social': SocialMediaStreamProcessor(),
            'market': MarketDataStreamProcessor()
        }
        
        self.data_validator = ConstitutionalDataValidator()

    async def process_real_time_streams(self):
        """
        Parallel processing of multiple data streams
        """
        async with asyncio.TaskGroup() as tg:
            blockchain_task = tg.create_task(
                self.stream_processors['blockchain'].start_stream()
            )
            social_task = tg.create_task(
                self.stream_processors['social'].start_stream()
            )
            market_task = tg.create_task(
                self.stream_processors['market'].start_stream()
            )
            
            return {
                'blockchain_status': await blockchain_task,
                'social_status': await social_task,
                'market_status': await market_task
            }

Last updated