Data Pipeline Architecture
COMPI's data pipeline implements real-time processing capabilities with fault tolerance and scalability.
Real-Time Data Ingestion
import asyncio
from typing import Dict
class DataPipelineOrchestrator:
def __init__(self, config: Dict):
self.config = config
self.stream_processors = {
'blockchain': BlockchainStreamProcessor(),
'social': SocialMediaStreamProcessor(),
'market': MarketDataStreamProcessor()
}
self.data_validator = ConstitutionalDataValidator()
async def process_real_time_streams(self):
"""
Parallel processing of multiple data streams
"""
async with asyncio.TaskGroup() as tg:
blockchain_task = tg.create_task(
self.stream_processors['blockchain'].start_stream()
)
social_task = tg.create_task(
self.stream_processors['social'].start_stream()
)
market_task = tg.create_task(
self.stream_processors['market'].start_stream()
)
return {
'blockchain_status': await blockchain_task,
'social_status': await social_task,
'market_status': await market_task
}
Last updated